Modeling & Simulation

Course Code	Credit Hours
CE-323	1-1

Course Description

Introduction to fundamental concepts, techniques, and tools for creating mathematical models and conducting simulations to analyze complex systems. Covers mathematical modelling principles, simulation techniques, model validation, optimization, and real-world applications. Hands-on experience with simulation software. Ideal for engineering students seeking to enhance problem-solving skills and decision-making in engineering domains.

Text Book:

- Introduction to Matlab for Engineering Students by David Houcque, Northwestern University latest edition.
- 2. https://www.mathworks.com/help/simulink/simulation.html
- 3. https://www.mathworks.com/help/simulink/modeling.htm

Reference Book:

Prerequisites:

Nil.

	Without Project (%)	With Project/Complex Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25
Project	-	5-10
End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR THEORY

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assessment/ Viva	20%

Teaching Plan

Week No	Topics/Learning Outcomes
1	Prepare Model Inputs and Outputs
2	Configure Simulation Conditions
3	Run Simulations
4	View and Analyze Simulation Results
5	Test and Debug Simulations
6	Optimize Performance
7-8	Simulation Guidelines & Best Practices
9	MSE
10	Design Model Architecture
11	Manage Design Data
12	Design Model Behavior
13	Configure Signals, States, and Parameters
14	Configure Inputs and Visualizations
15	Analyze and Remodel Design, Test Model Components
16	Modeling Guidelines & Best Practices
17-18	End Semester Exam

Practical

Experiment	Description
Νο	
1	Introductions to programming with MATLAB
	Find the response of a lumped variable model expressed in terms of
2	transfer
	function using MATLAB for input of (i) unit step function (ii) unit impact
	function and (iii) unit ramp function
3	Use of Simulink in MATLAB for engineering problems
4	Introduction to Abaqus software for civil engineering applications
5	How to model structural members such as beams, columns and trusses etc.
	for different loading & boundary conditions using Abaqus FEM software.
6	Introduction to Visual Basic (VB) for civil engineering applications.
7	Application of Visual Basic in automating repetitive tasks, data analysis &
/	visualization.